Pauphine | PSL*

UNIVERSITE PARIS

- COMPUTER SCIENCE, DECISION-MAKING, AND DATA

Algorithmic and advanced
Programming in Python

Eric Benhamou eric.benhamou@dauphine.eu
Chien-Chung.Huang chien-chung.huang@ens.fr
Sofia Vazquez sofia.Vazquez@dauphine.eu

Outline

Introduction, motivations,
Linked list

Stacks

Queues, Trees

> W e

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Evaluation principle

 30% project to be finalized before 22 Dec 2021
* 70% written test to be done during week of January 10 2022

* For exceptional project, bonus of +20%

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Algorithms and

programming are at the
center of all software
applications, all fields

combined

IIIIIIIIIIIIII

Algorithmic and advanc

seif;ft\l
self.fingerprins
self.\logoupes

self.debug - SN
self.logger - \ORRg.

the

p:elf.fl\t -
Selfo'iui
self.fwfﬂ'm"

classmethod ‘ e
def ¢rom_settingsicis,

v’

debug - settings.s
cls(job_gir{sett

r Q-

def request_seen(setf,‘ |
fp self.requestTims
fp self.fingerpr

| FUC
self.fingerprints.u, \
celf.files :
sel if.fi\e.wrxtca(|

: tis
fingerprin
def request“quist,flﬂQC’

re

Disambig.

00‘8 \
e Algorithm & — —_— @
programming Marketing K. @
. Recon

A

2

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Prerequisite

* Know how to write a simple algorithm in algorithmic terms:
 handle Boolean, integer, real, character variables
« handle arrays and character strings
 know the control structures (tests, loops, ...)
« know how to divide a program into functions and procedures
« be familiar with the organization of memory

* Know how to implement all this in Python

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

What Is a program?

A program contains data, variables and instructions

» Data structure should be adapted to the goal

 System defined data types: in python, additional complexity as this is a language with
no types -> so implicit typing

 User defined data types (classes in python) or list
 Abstract data types (ADTS)

* |nstructions are the core of the algorithm
» They are structured by the algorithm
« They describe the actions to do on the data to process them and produce an output

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

What Is an algorithm?

« Assume you want to prepare an omelette. What do you need?

1. Getafrying pan

2. Getthe oll

a) Do we have the oil?
I If yes, put in the pan
ii. If no, do we want to buy the oil?
. If yes, then go and buy
i. If no, terminate

3. Turn on the stove, etc...

-> S0 an algorithm is the step by step instructions to solve a given
problem

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Goal of the analysis of Algorithms

* Rate of growth of an algorithm:

Time
complexnty

Constant Adding an element to the front of a linked list kn

Log n Logarithmic Finding an element in a sorted array !

n Linear Finding an element in an unsorted array QD
N log n Linear log Sorting n items by divide and conquer

n?2 Quadratic Shortest path between 2 nodes in a graph }

n3 Cubic Matrix multiplication "

kn Exponential Towers of Hanoi problem

logkn

Log log n

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Type of analysis

* Scenario analysis:
* Worst case
* Best case
* Average case

« Asymptotic notation
* O(n), ... O(n?), etc...

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Golden Rules for complexity

There are some general rules to help us determine the running time of an algorithm.

1) Loops: The running time of a loop is, at most, the running time of the statements inside the loop
(including tests) multiplied by the number of iterations.
executes n iumes
for i in range(O,n):
print 'Current Number :', 1 #constant time

Total time = a constant ¢ X n = ¢n = 0O(n).

2) Nested loops: Analyze from the inside out. Total running time is the product of the sizes of all the loops.

outer loop executed n times
for 1 in range(O,n):
inner loop executes n umes
for j in range(O,n):
print 'i value %d and j value %d' % (i,j) #constant time

Total time = ¢ X n X n = ¢n* = 0On?).

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

11

Rules

3) Consecutive statements: Add the time complexities of each statement.

n = 100
exccutes n times
for i in range(0,n):

print 'Current Number :', i #constant time
outer loop executed n times
for i in range(0,n):

inner loop executes n times

for j in range(O,n):

print 'i value %d and j value %d' % (i,)) ficonstant time

Total time = ¢y + ¢;n + ¢;n* = 0(n?).

4) If-then-else statements: Worst-case running time: the test, plus either the then part or the else part
(whichever is the larger).

if n == |: #constant time
print "Wrong Value"
print n
else:
for i in range(0,n): #n times

print 'Current Number :', i #constant time

Total time = ¢ + ¢; » n = 0(n).

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

12

Logarithmic complexity

5] Logarithmic complexity: An algorithm is O(logn) if it takes a constant time to cut the problem size by
a fraction (usually by %). As an example let us consider the following program:

def Logarithms(n):

i= 1

while 1 <= n:
=1*2
print i

Logarithms(100)

If we observe carefully, the value of i is doubling every time. Initially { =1, in next step i =2, and in
subscquent steps @ = 4,8 and so on. Let us assume that the loop is executing some k times. At k'™ step 2% =
n and we come out of loop. Taking logarithm on both sides, gives

log(2%) = logn
klog2 = logn
k = logn / /\f we assume base-2

Total ime = O(logn).

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

13

Omega € Notation

Rate of Growth

g

c g(n)

» Input Size, n

This notation decides whether the upper and lower bounds of a given function (algorithm) are the same. The
average running time of an algorithm is always between the lower bound and the upper bound. If the upper

bound (0) and lower bound (€)) give the same result, then the © notation will also have the same rate of growth.
As an example, let us assume that f(n) = 10n + n is the expression. Then, its tight upper bound g(n) is O(n),
The rate of growth in the best case is g(n) = O(n).

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

14

Example

® Examples

n

Example 1 'ind ©® bound for [f(n) = '"7 -

Solution: - < "7 - g < n® forall,n= 1
"——2 =@m*) with ¢, = 1/5,c,=1and n,= |

Example 2 Prove n # ©O(n?)

Solution: ¢, n’ < n < c,n’=s only holds for: n < 1/¢,
“n #068(n?)

Example 3 Prove 6n* # ©(n?)

Solution: ¢, n”s 6n' < ¢, n?=» only holds for: n < ¢, /6
s ont # On?)

Example 4 Prove n + G(logn)

n y .
Solution: ¢ logn < n < c,logn >¢, = Y nzn - Impossible
L

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Master theorem for divide and conquer

T(n) = 27 (%) + O(n)

The following theorem can be used to determine the running time of divide and conquer algorithms. For a given
program (algorithm), first we try to find the recurrence relation for the problem. If the recurrence is ol the below
form then we can directly give the answer without fully solving it
Il the recurrence is ol the form T(n) = a'l'(%) +OMmclog'n), wherea = 1,0 > 1,k =20 and p is a real number, then;
1) Ifa> b*, then T(n) = ("‘)(n’”-"’;:)
2) Ifa= b
a. If p>—1, then T(n) = @(n'*%log?*'n)
b, Ifp= —1, then T(n) = O(n"loglogn)
c. HWp<~1, thenT(n) (-')(_n"’«"?)
3) lfa< b
a. I p =0, then T(n) = (n*logn)
b, Ifp<0, then T(n) = O(n*)

Dauphine | PSL > Algorithmic and advanced Programming in Python 16

UNIVERSITE PARIS

Divide and conquer master theorem example

1.22 Divide and Conquer Master Theorem: Problems & Solutions

For cach of the following recurrences, give an expression for the runtime T(n) if the recurrence can be solved
with the Master Theorem. Otherwise, indicate that the Master Theorem does not apply.

Problem-1 T(n) = 3T (n/2) + n*

Solution: 7'(n) =37 (n/2) + n* => T (n) =0(n?) (Master Theorem Case 3.a)
Problem-2 T(n) = 4T (n/2) + n*

Solution: 7'(n) = 47 (n/2) + n®* => T (n) = O(nlogn) (Master Theorem Case 2.a)
Problem-3 T(n) =T/2) + n*

Solution: 7'(n) = T(n/2) + n* =>O(n?) (Master Theorem Casc 3.a)

Problem-4 T(n) = 2"T(n/2) + n"

Solution: 7(n) 2"T(n/2) + n" => Does not apply (a 18 not constant)
Problem-5 1'(n) = 16T(n/4) + n
Solution: 7'(n) = 16T (n/4) + n => T(n) = G(n*) (Master Theorem Case 1)

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Linked list

3.1 What is a Linked List?

A linked list is a data structure used for storing collections of data. A linked list has the following properties.

e Successive elements are connected by pointers

e The last element points to NULL

e Can grow or shrink in size during execution of a program

e Can be made just as long as required (until systems memory exhausts)

e Does not waste memory space (but takes some extra memory for pointers)

4 —+» 15 S S —t—a! 30 —+ NULL

Head

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Why linked lists?
* Difference with array

One memory block is allocated for the entire array to hold the clements of the array. The array elements can be
accessed in constant time by using the index of the particular element as the subscript,

3 2 1

o
o

3

Index —p 0 I

o
w
D
N

Why Constant Time for Accessing Array Elements?

To access an array element, the address of an element 1s computed as an offset from the base address ol the
array and one multiplication is needed to compute what is supposed to be added to the base address to get the

memory address of the clement. First the size of an element of that data type 1s calculated and then it is
multiplied with the index of the element to get the value to be added to the base address.

This process takes one multiplication and one addition. Since these two operations take constant time, we can
say the array access can be performed in constant time.

Pauphine | PSL*

e Algorithmic and advanced Programming in Python 19

Advantage of array

Advantages of Arrays

e Simple and easy to use
e Faster access to the elements (constant access)

Disadvantages of Arrays

» Fixed size: The size of the array is static (specify the array size before using it).

* One block allocation: To allocate the array itself at the beginning, sometimes it may not be possible to
get the memory for the complete array (if the array size 1s big).

« Complex position-based insertion: To insert an clement at a given position, we may need to shift the
existing elements. This will create a position for us to insert the new element at the desired position. If
the position at which we want to add an element is at the beginning, then the shifting operation 1s more
expensive,

Dauphine | PSL> Algorithmic and advanced Programming in Python 20

UNIVERSITE PARIS

Pro and cons for linked list

Advantages of Linked Lists

Linked lists have both advantages and disadvantages. The advantage of linked hsts is that they can be expanded
in constant time. To create an array, we must allocate memory for a certain number ol elements. To add more
clements to the array, we must create a new array and copy the old array into the new array. This can take a lot
of time.

We can prevent this by allocating lots of space initially but then we might allocate more than we need and waste
memory. With a linked list, we can start with space for just one allocated element and add on new clements
casily without the need to do any copying and reallocating.

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

21

cons

[ssues with Linked Lists (Disadvantages)

There are a number of issues with linked lists. The main disadvantage of linked lists is access time to individual
elements. Array is random-access, which means it takes O(1) to access any ¢lement in the array. Linked lists
take O(n) for access to an element in the list in the worst case. Another advantage of arrays in access time is
spacial locality in memory. Arrays are defined as contiguous blocks of memory, and so any array element will be
physically near its neighbors. This greatly benefits from modern CPU caching methods.

Although the dynamic allocation of storage is a great advantage, the overhead with storing and retrieving data
can make a big difference. Sometimes linked lists are hard to manipulate. If the last item is deleted, the last but
one must then have its pointer changed to hold a NULL reference. This requires that the list is traversed to find
the last but one link, and its pointer set to a NULL reference,

Finally, linked lists waste memory in terms of extra reference points.

Dauphine | PSL¥ Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

22

Comparison linked list, array and dynamic array

Pauphine | PSL*

UNIVERSITE PARIS

Algorithmic and advanced Programming in Python

Parameter Linked list Array Dynamic array
Indexing O(n) O(1) O(1)
I tondelet ;i == o(1) O(n), ifurm_-v is not full (for ﬁ()()
S . e ; 4 ’ N - ”
nserton/deletion at begimnmning (shifting the elenents)
. . O(1 , if array is not full
Insertion at ending O(n) O(1), if array i1s not full (1) _ S
O(n), if array is full
Deletion at ending O(n) O(1) 4 O(n)
- ; . O(n), if array is not full (for
Insertion in middle O(n) (.). s (O(n)
shifting the clements)
A— . O(n), if array is not full (for
Deletion in middle O(n) G O(n)
shifting the elements)
Wasted space O(n) 0 O(n)

23

In python

Paup

#Node of a Singly Linked List
class Node:

hine | PSL%

UNIVERSITE PARIS

#constructor
def __init_ (self):

self.data = None

self.next = None
#method for setting the data field of the node
def setData(self data):

self.data = data
#imethod for getting the data field of the node
def getData(self):

return self.data
#method for setting the next field of the node
def setNext(self,next):

self.next = next
#method for getting the next field of the node
def getNext(self):

return self.next
#ireturns true if the node points to another node
def hasNext(self):

return sclf.next != None

Algorithmic and advanced Programming in Python

24

Linked list insertion

s : . S
Singly Linked List Insertion
Insertion into a singly-linked list has three cases:

e Inserting a new node before the head (at the beginning)

e Inserting a new node after the tail (at the end of the list)

e Inserting a new node at the middle of the list (random location)

Note: To insert an element in the linked list at some position p, assume that after inserting the element the
position of this new node is p.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

25

Algorithm: insertion

Inserting a Node in Singly Linked List at the Beginning

In this case, a new node is inserted before the current head node. Only one next pointer needs to be modified (new
node’s next pointer) and it can be done in two steps:

e Update the next pointer of new node, to point to the current head.

New node

data -t =P 15 = m— 7 S ST 40 id NULL
head
e Update head pointer to pomnt to the new node.
New node
data -t =P 15 . TN 7 — N () —p» NULL
Head

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Code

#method for inserting a new node at the beginning of the Linked List (at the head)
def insertAtBeginning(self,data);

newNode = Node()

newNode.setData(data)

if self.length == 0;
sell.head = newNode

else:
newNode.setNext(sell head)
self.head = newNode

self.length += 1

Dauphine | PSL > Algorithmic and advanced Programming in Python

||||||||| E PARIS

27

At the end

Inserting a Node in Singly Linked List at the Ending

In this case, we need to modify twoe next pointers (last nodes next pointer and new nodes next pointer).

e New nodes next pointer points to NULL.

NULL
New node
4 —_p 15 —_ 7 /f data -th NULL
Head
e Last nodes next pointer points to the new node.
New node
} — 15 —_ 7 -—t=pl 40 —+p» NULL

Head

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

28

Code

#method for inserting a new node at the end of a Linked List
def insertAtEnd(self,data):

newNode = Node()

newNode.setData(data)

current = self.head
while current.getNext() != None:
current = current.getNext()

current.setNext(newNode)
self.length += 1

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

29

In the middle

Inserting a Node in Singly Linked List at the Middle

Let us assume that we are given a position where we want to insert the new node. In this casc also, we need to
modify two next pointers.

e If we want to add an clement at position 3 then we stop at position 2. That means we traverse 2 nodes
and insert the new node. For simplicity let us assume that the second node is called position node. The
new node points to the next node of the position where we want to add this node.

Position node

9 —tPp{ 15 - 7 —t—p 4() —» NULL

Head &
data -

New node

Dauphine | PSL > Algorithmic and advanced Programming in Python 30

UNIVERSITE PARIS

Position node

4 ——» 15 ’ 7 —t—» 40 —» NULL
,I
/, S
e d g ¥
; \
7/
Head \ > data L %
New node

Let us write the code for all three cases. We must update the first element pointer in the calling function, not
just in the called function. For this reason we need to send a double pointer. The following code inserts a node

in the singly linked list.

Dauphine | PSL¥ Algorithmic and advanced Programming in Python 31

UNIVERSITE PARIS

Code

#Method for inserting a new node at any position in a Linked List
def insertAtPos(self,pos,data):
if pos > sell.length or pos < 0:
return None

else:
if pos == 0:
self.insertAtBeg(data)
else:

if pos == self.length:
sell.insertAtEnd(data)
else:
newNode = Node()
newNode.setData(data)
count = 0
current = self.head
while count < pos-1:
count += |
current = current.getNext()

newNode.setNext(current.getNext())
current.setNext(newNode)
self.length += |

Dauphine | PSL > Algorithmic and advanced Programming in Python 32

UNIVERSITE PARIS

Deleting in linked list

Singly Linked List Deletion
Similar to insertion, here we also have three cases

. Deleting the first node
° Deleting the last node
o Deleting an intermediate node.

Douphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

33

Deleting the first node

Deleting the First Node in Singly Linked List
First node (current head node) is removed from the list. It can be done in two steps:

e Create a temporary node which will point to the same node as that of head.

_— 40 —+p NULL

~J)

4 - 15 . C——N

Head Temp

e Now, move the head nodes pointer to the next node and dispose of the temporary node.

o (- 15 i 7 N — 40 —» NULL
\ T
\
\
N\
Temp Head

Dauphine | PSL > Algorithmic and advanced Programming in Python 34

UNIVERSITE PARIS

Code

#imethod to delete the first node of the linked list
def deleteFromBeginning(self):
if self.length == O:
print "The list 1s empty”
else:
sclf.head = self.head.getNext()
sell.length -= 1

Dauphine | PSL > Algorithmic and advanced Programming in Python

||||||||| E PARIS

35

Deleting an intermediate node in singly listed list

Deleting an Intermediate Node in Singly Linked List

In this case, the node to be removed is always located between two nodes. Head and tail links are not updated in
this case. Such a removal can be done in two steps:

e Similar to the previous case, maintain the previous node while traversing the list. Once we lind the node
to be deleted, change the previous node’s next pointer to the next pointer of the node to be deleted.

-———
- il S

4 __.’ 15 -7 7 __:{ 40 —+p NULL

Head Previous node Node to be deleted

e Dispose of the current node to be deleted.

- —
— - o

—— : ’I . = \‘*
— ” ~ /
| 4 —tpl 15 { / :-<| —t— 40 —+» NULL

o g .
Head Previous node Node to be deleted

Dauphine | PSLe Algorithmic and advanced Programming in Python 36

UNIVERSITE PARIS

Code

#Delete with node from linked list
def deleteFromLinkedListWithNode(self, node):
if self.length == O;
raise ValueError("List is empty”)
else:
current = sell head
previous = None
found = False
while not found:
il current == node:
found = True
elif current is None:
raise ValueError("Node not in Linked List")
else:
previous = current
current = current.getNext()
il previous is None:
self.head = current.getNext()
else:
previous.seNext{current.getNext())
self.length -= |

UNIVERSITE PARIS

Dauphine | PSL > Algorithmic and advanced Programming in Python

37

Code

def deleteValue(self,value):
currentnode = self head
previousnode = self.head

while currentnode.next != None or currentnode.value != value:
if currentnode.value == value:

previousnode.next = currentnode.next
sell.length -=]

return

else:
previousnode = currentnode
currentnode = currentnode. next

print "The value provided is not present”

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

38

Delete at position

fiMethod to delete a node at a particular position
defl deleteAtPosition(self, pos):

count = ()

currentnode = self.head

previousnode = self. head

if pos > self.length or pos < 0:
print "The position does not exist. Please enter a valid position”
else:
while currentnode.next 1= None or count < pos:
count = count + 1
if count == pos:
previousnode.next = currentnode. next
self.length -= |
return
else:
previousnode = currentnode
currentnode = currentnode. next

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

39

In Lab session

* You will play with the concepts and starts getting more and more
familiar with how this works in real life

 This will be useful for your project

* Lab are done by Sofia Vasquez

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Reminder of the objective of this course

* People often learn about data structures out of context

 But In this course you will learn foundational concepts by building a
real application with python and Flask (we will start in session 3)!

* To learn the Ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data

structures

Dauphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

Outline

1. Stack
a) Concepts
b) Implementation choice
c) Corresponding codes

2. Queue

a) Concepts
b) Implementation choice
c) Corresponding codes

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

What Is a stack

A stack is a simple data structure used for storing data (similar to Linked Lists). In a stack, the order in which
the data arrives is important. A pile of plates in a cafeteria is a good example of a stack. The plates are added to
the stack as they are cleaned and they are placed on the top. When a plate, is required it is taken from the top of
the stack. The first plate placed on the stack is the last one to be used.

Definition: A stack is an ordered list in which insertion and deletion are done at one end, called top. The last

element inserted is the first one to be deleted. Hence, it is called the Last in First out (LIFO) or First in Lasl out
(FILO) list.

Dauphine | PSLe Algorithmic and advanced Programming in Python 43

UNIVERSITE PARIS

Special names

Special names are given to the two changes that can be made to a stack. When an element is inserted in a
stack, the concept is called and when an element is removed from the stack, the concept is called pop.)
Trying to pop out an empty stack is cullt:(l[under/'luw]und trying to push an clement in a full stack is called
m. Generally, we treat them as exceptions. As an example, consider the snapshots of the stack.

top

Pauphine | PSL*

UNIVERSITE PARIS

Pushing D

D =
C C
B B
A A

Algorithmic and advanced Programming in Python

Popping D

top

3

top

44

How stack are used?

Consider a working day in the office. Let us assume a developer is working on a long-term project. The manager
then gives the developer a new task which is more important. The developer puts the long-term project aside
and begins work on the new task. The phone rings, and this is the highest priority as it must be answered
immediately. The developer pushes the present task into the pending tray and answers the phone.

When the call is complete the task that was abandoned to answer the phone is retrieved from the pending tray
and work progresses. To take another call, it may have to be handled in the same manner, but eventually the
new task will be finished, and the developer can draw the long-term project from the pending tray and continue
with that.

Dauphine | PSL> Algorithmic and advanced Programming in Python 45

UNIVERSITE PARIS

Stack advanced data structure

4.3 Stack ADT

The following operations make a stack an ADT. For simplicity, assume the data is an integer type.

Main stack operations

e Push (int data): Inserts data onto stack,
e int Pop(): Removes and returns the last inserted element from the stack.

Auxiliary stack operations

e int Top(): Returns the last inserted element without removing it.

e int Size(): Returns the number of elements stored in the stack.

e int IsEmptyStack(): Indicates whether any elements are stored in the stack or not.
e int IsFullStack(): Indicates whether the stack is full or not.,

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

46

Direct applications

4.4 Applications

Following are some of the applications in which stacks play an important role.

Direct applications

Balancing of symbols

Infix-to-postfix conversion

Evaluation of postlix expression

Implementing function calls (including recursion)

Finding of spans (finding spans in stock markets, refer to Problems section)
Page-visited history in a Web browser [Back Buttons]

Undo sequence in a text editor

Matching Tags in HTML and XML

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

47

Implementation

4.5 Implementation

There are many ways of implementing stack ADT; below are the commonly used methods.
e Simple array based implementation
e Dynamic array based implementation
e Linked lists implementation

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

48

Simple array implementation

This implementation of stack ADT uses an array. In the array, we add clements from left 1o right and use a
variable to keep track of the index of the top element,

| | | | |

?l()p

S

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

The array storing the stack clements may become full. A push operation will then throw a full stack exception.
Similarly, if we try deleting an element from an empty stack it will throw stack empty exception.

class Stack({object):
def init_ (self, limit = 10):
self.stk = ||
self. limit = limit
def iIsEmpty(self):
return len(sell.stk) <= 0
def push(self, item):
if len(selfstk) >= self.limit:
print 'Stack Overflow!’
else:
sell.stk.append(item)
print 'Stack after Push’,self.stk

def pop(self):
if len(self.stk) <= O:
print 'Stack Underflow!'
return O
else:
return self.stk.pop()
def peek(sell):
if len(self.stk) <= O:
print 'Stack Underflow!'
return 0
else:
return self.stk|-1]
def size(self):
return len(self.stk)

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Performance and limitations?

Performance & Limitations

Performance

Let 1 be the number of elements in the stack. The complexities of stack operations with this representation can
be given as:

Space Complexity (for n push operations) | O(n)
Time Complexity of Push() O(1)
Time Complexity of Popl) O(1)
Time Complexity of Size() O(1)
Time Complexity of IsEmptyStack() O(1)
Time Complexity of IsFullStack() O(1)
Time Complexity of DeleteStack() O(1)

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Limitations?

Limitations

The maximum size of the stack must first be defined and it cannot be chang
into a full stack causes an implementation-specific exception.

sed. Trying to push a new clement

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

52

Dynamic Array Implementation

First, let's consider how we implemented a simple array based stack. We took one index variable top which
points to the index of the most recently inserted element in the stack. To insert (or push) an element, we
increment top index and then place the new element at that index.

Similarly, to delete (or pop) an element we take the element at top index and then decrement the top index. We
represent an empty queue with top value equal to —1. The issue that still needs to be resolved is what we do
when all the slots in the fixed size array stack are occupied?

First try: What if we increment the size of the array by 1 every time the stack is full?

e Push(): increase size of S|| by 1
e Pop|): decrease size of S|| by 1

Dauphine | PSL > Algorithmic and advanced Programming in Python 53

UNIVERSITE PARIS

Problems with this approach?

This way of incrementing the array size is oo expensive. Let us see the reason for this. For example, at n = 1, to
push an element create a new array of size 2 and copy all the old array elements to the new array, and at the
end add the new element. At n = 2, to push an clement create a new array of size 3 and copy all the old array
elements to the new array, and at the end add the new element.

Similarly, at n = n—1, if we want to push an clement create a new array of size n and copy all the old array
elements to the new array and at the ¢nd add the new element. After n push operations the total time T'(n)
(number of copy operations) is proportional to 1 + 2 + ... 4+ n =0(n?).

Alternative Approach: Repeated Doubling

Let us improve the complexity by using the array doubling technique. If the array is full, create a new array of
twice the size, and copy the items. With this approach, pushing n items takes time proportional to n (not n?).

For simplicity, let us assume that initially we started with n — 1 and moved up to n = 32. That mecans, we do
the doubling at 1,2,4,8, 16. The other way of analyzing the same approach is: at n = 1, if we want to add (push)
an element, double the current size of the array and copy all the elements of the old array to the new array.

At n = 1, we do 1 copy operation, at n = 2, we do 2 copy operations, and at n =4, we do 4 copy operations and
so on. By the time we reach n = 32, the total number of copy operations is 1+ 2 + 4 + 8 + 16 = 31 which is
approximately equal to 2n value (32). If we observe carefully, we are doing the doubling operation logn times.

Now, let us generalize the discussion. For n push operations we double the array size logn times. That means,
we will have logn terms in the expression below. The total time T(n)of a series of n push operations is
proportional to

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

54

Question compute the complexity?

| n n
1-!-dlr1iH.__I-1-—|-:;iH ?

e

Dauphine | PSL» Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

55

Solution

1l 4+ 2 4+ 448 ln-l"i ln4"!n | 2 |
) a > n=n 5 y ﬁ 4 VA
(l {] { Ill I4l24 l)
e, A T
= n(2)=2n=0(n)

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Implementation

class Stack(object):
def _init_ (self, limit = 10):
sell.stk = limit*[None]
self. limit = limit
def isEmpty(sclf):
return len(self.stk) <= 0

def push(self, item):
if len(self.stk) >= self.limit:
self.resize()
self.stk.append(item)
print 'Stack after Push',self.stk

def pop(self):
if len(self.stk) <= 0O:
print 'Stack Underflow!'
return 0
else:
return self.stk.popl()

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Ll
ST
1™

Pauphine | PSL

UNIVERSITE PARIS

Algorithmic and advanced Programming in Python

Performance

Performance

Let n be the number of elements in the stack. The complexities for operations with this representation can be
given as:

Space Complexity (for n push operations) | O(n)
Time Complexity of CreateStack() O(1)
Time Complexity of Push() O(1) (Average)
Time Complexity of Pop() 0(1)
Time Complexity of Top() 0(1)
Time Complexity of ISEmptyStack() O(1))
Time Complexity of IsFullStack() O(1)
Time Complexity of DeleteStack() O(1)

Note: Too many doublings may cause memory overflow exception.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Linked List Implementation

The other way of implementing stacks is by using Linked lists. Push operation is implemented by inserting
element at the beginning of the list. Pop operation is implemented by deleting the node from the beginning (the
header/top node).

Paup

4 =1}

15

40

L» NULL

top

hine | PSL%

UNIVERSITE PARIS

Algorithmic and advanced Programming in Python

60

#Node of a Singly Linked List
class Node:
#constructor
def _init__(self):
self.data = None
self next = None

#method for setting the data field of the node
def setData(self,data):
self.data = data
#method for getting the data field of the node
def getData(self):
return self.data
#method for setting the next field of the node
def setNext(self, next):
self.next = next
#method for getting the next field of the node
def getNext(self):
return self.next
#ireturns true if the node points to another node
def hasNext(self):
return self.next != None

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

61

return self.next = None
class Stack(object):
def init__ (self, data=None):
self.head = None
if data:
for data in data:
self.push(data)

defl push(self, data):
temp = Node()
temp.setData(data)
temp.setNext(self. head)
sell.head = temp

def pop(self):
if self.head is None:

raise IndexError

temp = self.head.getData()

self.head = self head.getNext()
return temp

defl peek(self):
if self.head is None:
raise IndexError
return self. head.getData()

our_list = ["first", "second”, "third", "fourth”|
our_stack = Stack(our_list)

print our_stack.pop()

print our_stack.pop()

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Performance

Let n be the number of clements in the stack. The complexities for operations with this representation can be
given as:

Space Complexity (for n push operations) | O(n)
Time Complexity of CreateStack() O(1)
Time Complexity of Push() O(1) (Average)
Time Complexity of Pop() O(1)
Time Complexity of Top() O(1)
Time Complexity of IsEmptyStack() O(1)
Time Complexity of DeleteStack() O(n)

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

4.6 Comparison of Implementations

Comparing Incremental Strategy and Doubling Strategy

We compare the incremental strategy and doubling strategy by analyzing the total time 7T(n) needed to perform a
series of n push operations. We start with an empty stack represented by an array of size 1.

We call amortized time of a push operation is the average time taken by a push over the series of operations
that is, T(n)/n. -

Incremental Strategy

The amortized time (average time per operation) of a push operation is O(n) [O(n*)/n].
Doubling Strategy

In this method, the amortized time of a push operation is O(1) [O(n)/n].

Note: For analysis, refer to the Implementation section.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Comparing Array Implementation and Linked List Implementation
Array Implementation

e Operations take constant time,

e lixpensive doubling operation every once in a while.

* Any sequence of n operations (starting from empty stack) - "amortized" bound takes time proportional to
n.

Linked List Implementation

e Grows and shrinks gracefully.
e [Every operation takes constant time O(1).
e Every operation uses extra space and time to deal with references.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

65

Queue

5.1 What is a Queue?

A queue is a data structure used for storing data (similar o Linked Lists and Stacks). In queue, the order in
which data arrives is important, In general, a queue is a line of people or things waiting to be served in
scquential order starting at the beginning of the line or sequence.

Definition: A queue is an ordered list in which insertions arc done at one end (rear) and deletions are done at
other end (front). The first clement to be inserted is the first one to be deleted. Hence, it is called First in First
out (FIFO) or Last in Last out (LILO) list,

Similar to Stacks, special names are given to the two changes that can be made to a queue, When an clement is
inserted in a queue, the concept is called EnQuene, and when an element is removed [rom the queue, the conceplt
is called DeQueue.

DeQueueing an empty qucuce is called underflow and EnQueuing an element in a full queue is called overflow,
Generally, we treat them as exceptions. As an example, consider the snapshot of the queuec,

f

Elements ready ’ f New clements ready
to be served front rear to enter Queue
(DeQueuce) (EnQuecue)

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

66

5.2 How are Queues Used

The concept of a queue can be explained by observing a line at a reservation counter. When we enter the line we
stand at the end of the line and the person who is at the front of the line is the one who will be served next. He
will exit the queue and be served,

As this happens, the next person will come at the head of the line, will exit the queue and will be served. As cach
person at the head of the line keeps exiting the queue, we move towards the head of the line. Finally we will
reach the head of the line and we will exit the queue and be served. This behavior is very uselul in cases where
there 1s a nced to maintain the order of arrival.

5.3 Queue ADT

The following operations make a queue an ADT. Insertions and deletions in the queue must lollow the FIFO
scheme. For simplicity we assume the elements are integers.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

67

Main Queue Opecrations

e EnQucuc(int data): Inscrts an clement at the end of the queuce
e int DeQueue(): Removes and returns the element at the front of the queue

Auxiliary Queue Operations

e int Front(): Returns the clement at the front without removing it
e int QueueSize(): Returns the number of elements stored in the queue
e int IsEmptyQuecuc(): Indicates whether no clements are stored in the queue or not

5.4 Exceptions

Similar to other ADTSs, executing DeQueuwe on an empty queue throws an “Empty Queue Exception” and executing
EnQueue on a full quene throws a “Full Queue Exception”.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

5.5 Applications

Following arc the some of the applications that use qucucs.
Direct Applications

e Operating systems schedule jobs (with equal priority) in the order of arrival (e.g., a print queue).

e Simulation of real-world queues such as lines at a ticket counter or any other first-come first-served
SCEeNAario requires a queue.

e Multiprogramming,.

e Asynchronous data transfer (file 10, pipes, sockets).

e Waiting times of customers at call center.

e Determining number of cashiers to have at a supermarket.

Indirect Applications

e Auxiliary data structure for algorithms
e Component of other data structures

5.6 Implementation

There are many ways (similar to Stacks) of implementing queue opcerations and some of the commonly used
mecthods are listed below.

e Simple circular array based implementation

e Dynamic circular array bascd implementation

e Linked list implementation

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Why Circular Arrays?

First, let us sce whether we can use simple arrays for implementing quecues as we have done for stacks. We
know that, in queues, the insertions are performed at one end and deletions are performed at the other end.
Aflter performing some insertions and deletions the process becomes easy to understand.

In the example shown below, 1t can be seen clearly that the initial slots of the array are getting wasted. So,
simple array implementation for queune is not efficient. To solve this problem we assume the arrays as circular
arrays. That means, we treat the last element and the first array elements as contiguous., With this
representation, if there are any free slots at the beginning, the rear pointer can easily go to its next free slot.

/

* % New clements ready to
front rear enter Queue (enQueuce)

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Note: The simple circular array and dynamic circular array implementations are very similar to stack array
implementations. Refer to Stacks chapter for analysis of these implementations.

Simple Circular Array Implementation

FFixed size array

rear

front

This simple implementation of Queue ADT uses an array. In the array, we add elements circularly and use two
variables to keep track of the start element and end clement. Generally, front is used to indicate the start element and
rear is used to indicate the end element in the queue.

The array storing the queue clements may become full. An EnQueue operation will then throw a full queue exception.
Similarly, if we try deleting an clement from an empty qucue it will throw empty queue exception,

Note: Initially, both front and rear points to - 1 which indicates that the queue 1s empty.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

class Queue(object):

def _init__(self, limit = 5):
self.que = ||
self.limit = limit
self.front = None
sclfirear = None
sell.size = 0

def isEmpty(self):
return self. size <= 0

defl enQueue(self, item):
if self.size >= self. limit:
print 'Queue Overflow!'
return
else:
self.que.append(item)

if self.front is None:
self front = sellf.rear = 0
clse:
self. rear = self.size
self.size += 1
print ‘Queue alter enQueue’,sell.que

def deQueuc(sclf):
if self.size <= 0;
print 'Queue Underflow!'
return O
else:
self . que. pop(0)
self.size -= 1
if self.size == 0:
self.front = self . rear = None
else:
sclf. rear = sclf.size-1
print 'Qucuc after deQueuc',self.que

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

print ‘Qucuce after deQuceuc',self.que

def queueRear(sell):
if sell.rear is None:
print "Sorry, the queue is empty!”

raise IndexError
return self.que(self.rear|

def queueFront(sell):
if self front is None:
print "Sorry, the queue is empty!"
raise IndexError
return self.que|self.front)

def size(self):
return self size

quc = Quecucf)
que.cnQucue(*first”)

print "Front: "+que.queueFront()
print "Rear: "+que.queueReary()
que.enQueue('second”)

print “Front: "“+que.queuelFront()
print "Rear: "+que.queucRear()
que.enQueue("third")

print "Front: "+que.queucFront()
print "Rear: "+que.queueRear()
que.deQueue()

print "Front: "+que.queueFront()
print "Rear: "+que.queucRear()

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Performance and Limitations

Performance: Let n be the number of elements in the queue:

Space Complexity (for n EnQueue operations) | O(n)
Time Complexity of EnQueue() O(1)
Time Complexity of DeQueue() O(1)
Time Complexity of ISEmptyQueue() O(1)
Time Complexity of IsFullQueue() 0(1)
Time Complexity of QueueSize() O(1)
Time Complexity of DeleteQueue() (1)

Limitations: The maximum size of the queue must be defined as prior and cannot be changed. Trying to
EnQueue a new element into a full queue causes an implementation-specific exception,

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Pauphine | PSL

UNIVERSITE PARIS

Algorithmic and advanced Programming in Python

print 'Queue after enQueuce,sclf.que

def deQueue(sell):
if self.size <= Q:
print 'Quecue Underflow!'
return 0
clse:
self.que.pop(0)
self.size -= |
if self.size == 0:
self.front = self . rear = None
else:
self.rear = self size-1
print ‘Queue after deQueue',self. que

del queueRear(self);
if self.rear is None:
print "Sorry, the queue is empty!”
raise IndexError
return self.quefself.rear]

def queueFront(self):
if self.front is None:
print "Sorry, the queue is empty!”
raise IndexError
return self.que|self.front]

def size(sell):
return self.size

def resize(self):
newQue = list(self.que)
selfllimit = 2*selfl. limit
self.que = newQue

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Let n be the number of elements in the queue.

Paup

hine | PSL%

UNIVERSITE PARIS

Space Complexity (for n EnQueue operations) | O(n)
Time Complexity of EnQueue() O(1) (Average)
Time Complexity of DeQueue() O(1)
Time Complexity of QueueSize() O(1)
Time Complexity of [SEmptyQueuc() O(1)
Time Complexity of IsFullQueuce() O(1)
Time Complexity of QueueSize() O(1)
Time Complexity of DeleteQueuef) O(1)

Algorithmic and advanced Programming in Python

Linked List Implementation

Another way of implementing queues is by using Linked lists. £nQueuwe operation is implemented by inserting an
clement at the end of the list. DeQueue operation is implemented by deleting an element from the beginning of

the list.

4 ——» 15 —_—p ——>» 40
front rear
#Node of a Singly Linked List
class Node:
#constructor
def _init__(self, data=None, next=None):
self.data = data

scll.last = None

sclf.next = next
fimethod for sctting the data ficld of the node
def setData(self,data):

sell.data = data
#method for getting the data field of the node
def getData(self):

return self.data
#method for setting the next field of the node
def sctNext(self, next):

sclf.next = next
fimethod for getting the next ficld of the node

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

def getNext(self):

return self.next
#imethod for setting the last field of the node
def setLast(self,last):

sclf.last = last
#imethod for getting the last field of the node
def getLast(self):

return self.last
#returns true if the node points to another node
def hasNext(self):

return self.next != None

class Queue(object):
defl _init _(self, data=None):
sell.front = None
self.rear = None
self.size = 0

def enQueuc(sell, data);
sclfilastNode = self. front
self.front = Node(data, sclf, front)
if self lastNode:
self.lastNode.set Last(self. front)
if scll.rear is None:
sclf.rear = selfl.front

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

self.size += |

def queueRear(sell):
if sclf.rear is None:
print "Sorry, the queue is empty!”
raise IndexError
return selfirear.getData()

def queueFront(self):
if self.front is None;
print "Sorry, the queue is empty!”
raisc IndexError
return self.front.getData()

def deQueuc(self):

if sclf.rear is None:
print "Sorry, the queue is empty!”
raise IndexError

result = self.rear.getData()

sclf.rear = sclf.rear. last

self.size -= 1

return result

defl size(sell):
return sclf.size

que = Queue()
que.enQuene('first”)
print "Front: "tque.queuekront()
print "Rear: "tque.queueRear()
que.enQueue('second”)
print "Front: "tque.queueFront()
print "Rear: "+tque.queucRear()
que.enQueue('third”)

Dauphine | PSLe Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

Performance

Let n be the number of clements in the queue, then

Space Complexity (for n EnQueue operations)

O(n)

Time Complexity of EnQueuc()

O(1) (Average)

Time Complexity of DeQueue()

O(1)

Time Complexity of IsEmptyQueue()

0(1)

Time Complexity of DeleteQueue()

o)

Comparison of Implementations

Note: Comparison is very similar to stack implementations and Stacks chapter.

Dauphine | PSL > Algorithmic and advanced Programming in Python

UNIVERSITE PARIS

In Lab session

* You will play with the concepts and starts getting more and more
familiar with how this works in real life

 This will be useful for your project

* Lab is done by Sofia Wasquez

E)auphine | PSL¥ Algorithmic and advanced Programming in Python

IIIIIIIIIIIIIII

